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Introduction

» Task is to identify the challenges and key elements in
possible solutions for the High Energy Physics
experiments in the next few decades.

l Parallel Session: Calorimetry - Palo Pinto (10:30-18:30)
- Conveners: Bilki, Burak (University of Iowa / Argonne National Laboratory); Ramberg, Erik (Fermilab)
time title presenter

10:30 Progress in imaging calorimetry/CALICE results/Event reconstruction Dr. REPOND, Jose (Argonne
National Laboratory)

11:10 The challenges of CMS calorimetry RUSACK, Roger (University of
Vimesote) dlKS 0N

11:50 Precision timing in calorimetry SPIROPULU, Maria (Caltech)

10 topics!

13:30 Recent advances in crystal calorimetry MURAT, Pavel (Fermilab)
ZHU, Ren-Yuan (Caltech)

14:20 Homogenous calorimetry PARA, Adam (Fermilab)
ZHU, Ren-Yuan (Caltech)

14:50 New radiation-hard materials FREEMAN, Jim (Fermilab)
ONEL, Yasar (University of
lowa)

I1 5:30 Coffee Break

16:00 Radiation-hard light-based electromagnetic calorimetry Prof. RUCHTI, Randy
(University of Notre Dame)

16:30 Noble liquid element calorimetry (MEG) Dr. SAWADA, Ryu (ICEPP, the
University of Tokyo)

17:10 Secondary Emission calorimetry BILKI, Burak (University of
lowa / Argonne National
Laboratory)
XIE, Si (Caltech)

17:50 Large-scale calorimetry for astrophysics WIENCKE, Lawrence
(Colorado School of Mines)



Findings — Imaging Calorimetry

CALICE demonstrates and leads the clear trend from conventional
calorimetry to imaging calorimetry.

All LHC experiments have adopted or are considering adopting imaging
technologies for their calorimeter upgrades.
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Findings — Challenges of CMS Calorimetry

Radiation damage and high pile-up. R-tﬁgsg&'gor

- Upgrade readout of barrel electromagnetic calorimeter. Collaboration

- Refurbish the scintillator of front part of the barrel hadron calorimeter

- Replace endcap calorimeters with a new silicon based high granularity
sampling calorimeter. First implementation of imaging calorimetry in a
hadron collider experiment!

- Keep the quartz fiber forward calorimeter at the highest n region.

Key Parameters of Endcap Calorimeter The Detector Challenges

Construction: = Detector materials.
* Hexagonal Si-sensors built into modules. o Silicon & Scintillator.
* Modules with a W/Cu backing plate and = Radiation hard electronics.
. ;’Ciriadout boa;d. v o Low power large number of channels.
oo :i_:;amml_ odules mounted on copper cooling = Module Engineering
v plates to make wedge-shaped cassettes. d
f |Iff.L||| = Cassettes inserted into absorber structures ° Needautomated assembly
[N at integration site (CERN) = Low power rad-hard front-end preamp.
|III|I|"|I|" L Thert te o Data flow on and off detector.
o | I s = Precision timing:
s |11 JRLEL 00111 = Registration.
. R Key parameters: o Clock distribution at the system level.
© L = Data Extraction
* Pixelsize1cmand o.5 cm* o 6 million channels at 40 MHz 12-bits/channel.
* 21,660 modules distributi
* 92,000 front-end ASICS. L Lt ovgechéSt” ution.
e *  Powerat end of life 115 kW. ° -DC converters.
System Divided into three separate parts: e »  System cooling.
EE - Silicon with tungsten absorber — 28 sampling layers — 25 X, + ~1.3 A o Operation at -30°C due to irradiation of the silicon.
FH - Silicon with brass absorber— 12 sampling layers —3.5 A = Event reconstruction and selection

BH —Scintillator with brass absorber — 11 layers - 5.5 A o Real time pattern recognition at level 2 and in HLT.
EE and FH are maintained at —30°C. BH is at room temperature.




Findings — Precision Timing in Calorimetry

Test beam results are always better than in-situ measurements. M. Spiropulu

Maijor limitations: clock distribution, slow pulse shaping and poor
exploitation of raw signal.

Fast timing expertise and equipment exist to implement timing for HL-
LHC.

Need to push forward for better precision for pileup mitigation in future
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Findings — Advances in Crystal Calorimetry

Several future crystal calorimeter implementations: LYSO for COMET
(Mu2e, Super B and CMS at HL-LHC) BaF, and PbF, for Mu2e and

g-2 respectively at Fermilab PbF,, PbFCI, BSO and BGO for ;y;ﬁ
Homogeneous HCAL for LC. -

Extensive radiation damage studies were performed.

Various crystals, inorganic scintillators, glasses and ceramics may
offer solutions for future HEP experiments.
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Findings — Homogenous Calorimetry

The concept of “Dual-Gate Calorimetry” is introduced.

Hadron calorimetry with high resolution and linear response is
possible with this technique.

Fast, dense, inorganic scintillators need to be explored.

A. Para
R.Y. Zhu

About 80% (on average) of the energy of hadronic showers is

. . . deposited within 0.5 nses)
Correlation of the Time Evolution and Short gate of 1 ns optimizes both the

Total Observed Energy (50 GeV pion) stochastic and the constant term.

Candidate crystals for
Homogenous calorimetry
B = TR 3
(BGO) (PWO) (BSO)
p (g/cm?) 7.13 8.29
A (cm) 22.8 20.7 21.0 24.3 23.1
N @ Ay 215 2.20 1.82 215 2.06
Tgecay (NS) 300 30/10 ? 30 100
Apnex (NM) 480 425/420 ? 420 470
o ) Cut-off A (nm) 310 350 250 280 300
cell local time (ns)
Light Output (%) 100 1.4/0.37 ? 17 20
Late energy depositions are related to neutron component: Use dual Melting point (°C) 1050 1123 842 608 1030
time gate to make the energy correction.
Raw Material Cost (%) 100 49 29 29 47



Findings — New Radiation-Hard Materials

- Limited options for intrinsically radiation-hard scintillators.
- Coating radiation-hard Cerenkov radiators (e.g. quartz) with inorganic

scintillators enable various options.

Y. Onel

- Radiation-hard wavelength shifters need further (immediate) attention.
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Findings — Radiation-Hard, Light-Based
Electromagnetic Calorimet

Shashlik technology was demonstrated to provide robust, efficient and
high-resolution electromagnetic calorimetry under radiation-harsh

conditions.
Compact design with rad-hard crystals, wavelength shifting capillaries

and photosensors.

R. Ruchti

@ A Shashlik 4x4 Test Array

WY/LYSO Shashlik Prototype of 16 modules:
28 W plates 2.5mm thick
29 LYSO Plates 1.5mm thick
WLS Fibers: Kuraray 1.2mm dia, Y11
Monitoring Fiber 0.9mm dia
Holes drilled in LYSO Plates/No polishing

W (2.5 mm)
LYSO (1.5 mm) Readout both Upstream and Downstream

/ SiPM (PDE = 20-25%)
Fermilab PADE Boards (Preamp and Digitizer)
’ \ ’ | | Total 128 channels
@ LO/32 Lo/8
1/2 Franc z:‘w":mmm end WLS Front D [ I |

Optical mixer

kS u':mormg Photosensors I
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Findings — Noble Liquid Element Calorimetry

Major impact points are the newly developed VUV-sensitive SiPMs
and simultaneous utilization of scintillation and ionization signals in the
noble liquids (segmented TPC). ,_ MEG | ,, MEG I

Noble liquids

He/N

sLong radiation length
s}<Low boiling temperature (< LN2)

R S aW a d a szShort scintillation wavelength (< 90 nm) 333 i
2
1000 ¢
) 9004
s}Short radiation length skVery short radiation length
skHigh resolution skVery high resolution % I
sModest price skVery expensive (~10 times higher 00 ale T
skHigh radioactivity than Kr) = = ‘
| BRE

— Homogeneous calorimeter — Homogeneous/scintillation calorimeter HilE l
|

16 times higher 2D “imaging” capability of events 4
kMore uniform energy respose
skBetter position resolution with using the shower-shape information
3kPileup identification

H1 Sampling LAr lonization 12WE @ 1 CMD-3 LXe calorimeter

Experiment Type Material Signal Resolution (%)

DO Sampling LAr lonization 16//E @ 0.3 ® 0.3/E

VEPP-2000 e*e" collider in Novosibirsk

Sampling LAr lonization 10WE @ 0.4 ® 0.3/E 5T
. . 2k Combined calorimeter, LXe + Csl
Homogeneous  LKr lonization ~ 3.2//E @ 0.42 ® 0.09/E % 400 | LXe : 5.4 xo
sk LXe+Csl : 13.5 xo
Homogeneous LKr lonization 3@1.8GeV

2k Successful operation since 2009
3k another 5 — 10 years operation

1.78/\JE @ 1.86

Homogeneous LXe lonization ) 2 expected.
combined resolution with Csl
C . . Upgrade study of the readout
Homogeneous  LXe Scintillation 1.7 @ 50 MeV * e@gtmmcs ai,’,',ing at 1 ns time

resolution is ongoing.
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Findings — Secondary Emission Calorimetry

Intrinsically radiation-hard and fast electromagnetic calorimetry option
for harsh radiation conditions.
B. Bilki

Unique capabilities of precision shower timing and position 3. Xie
measurements.

Feasible for large-scale applications and fine readout segmentation
hence imaging calorimetry.
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[ 0; »w 1
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Findings — Large-Scale Calorimetry for
Astrophysics

Large (ground) and really large (space) calorimeters for the detection
of Ultra High Energy Cosmic Rays are demonstrated.

Low-statistics critical data. L. Wiencke

Anisotropy Hints > 60 EeV
Statlstlcally llmlted

Grgmnc

§# Auger Observatory 5
RN360. . -_ oo .. o=t _-TTE RogEng :
8 -, ] ] :

*Atmospheric Science

= 3 o pretrial
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Comments

Significant R&D investments in imaging calorimetry (CALICE in particular) have
borne fruit in both hardware and Particle Flow Algorithms.

Precision timing (<100 psec) in calorimetry has been shown at the few channel
level, but remains challenging for a full system.

Many options exist for crystal calorimetry. There is no ‘perfect’ crystal that meets all
needs. Progress is being made on all fronts.

Simulation studies of Dual-Gate (fast vs slow) show that it is a compelling
alternative in dual readout hadron calorimetry.

R&D on new very-radiation-hard materials is necessary for any future/upgrade
collider detector. Examples for EM calorimetry include shashlik and secondary
emission.

Noble liquid calorimeters (Kr, Xe, Ar) are a very mature technology that give
excellent energy resolution.

Future very large scale (>10'8 eV) astrophysics calorimeters require advanced
photodetector arrays that can be triggered rapidly.

CPAD Workshop, October 7, 2015 13



Identification of Risks and Opportunities

Risks:

Precision timing
Radiation-hardness

(The reality deviates from predictions obtained from small-
scale demonstrators.)

Opportunities:

Explore better mating crystals/scintillators and
photodetectors. Might result in immediate implementation
In other areas including medical and security.



Recommendations

The success in the collider physics discoveries for the next ~ 20 years
will require imaging calorimetry. Expertise in Particle Flow Algorithms
and imaging calorimeters must be reinforced.

R&D for system-wide clock generation and transmission and wave-
form digitization should be emphasized to solve the foreseen pile-up
problems in future collider machines.

A systematic plan needs to be generated to search for and fully
characterize alternative radiation-hard scintillators, crystals, ceramics,
surface coatings, wavelength shifting fibers and capillaries.

A plan should be formulated to test homogenous, dual readout
concepts (including ‘dual-gate’). The design for a test beam module
with at least A3 size needs to be made.

CPAD Workshop, October 7, 2015 15



Possible Grand Challenge Ideas

A long list of challenges; long standing; each item has a
different weight for different implementation; each item
has been improving continuously:

large-scale (physical size, channel count),
low-power,

high-performance (high-resolution, powerful
algorithms),

high-speed, precision, affordable readout,
radiation-hard,

CPAD Workshop, October 7, 2015 16



